8-bit Original Microcontroller cmos

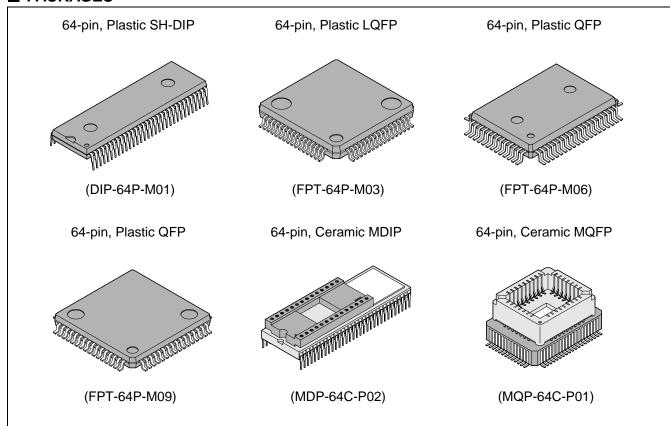
F²MC-8L MB89530H Series

MB89537H/537HC/538H/538HC/ MB89P538/PV530

DESCRIPTION

The MB89530H series is a one-chip microcontroller featuring the F²MC-8L core supporting low-voltage and high-speed operation. Built-in peripheral functions include timers, serial interface, A/D converter, and external interrupt. This product is an ideal general-purpose one-chip microcontroller for a wide variety of applications from household to industrial equipment, as well as use in portable devices.

■ FEATURES


- Wide range of package options
 - Two types of QFP packages (1 mm pitch, 0.65 mm pitch)
 - LQFP package (0.5 mm pitch)
 - SH-DIP package
- · Low voltage, high-speed operating capability
 - Minimum instruction execution time 0.32 μs (at base oscillator 12.5 MHz)
- F2MC-8L CPU Core
 - Instruction set optimized for controller operation
 - Multiplication/division instructions
 - 16-bit calculation
 - Branching instructions with bit testing
 - Bit operation instructions, etc.
- · Five timer systems
 - 8-bit PWM timer with 2 channels (usable as either interval timer of PWM timer)
 - Pulse width count timer (supports continuous measurement or remote control receiving applications)
 - 16-bit timer counter
 - 21-bit time base timer
 - Clock prescaler (17-bit)
 - UART
 - Synchronous or asynchronous operation, switchable
- 2 serial interfaces (Serial I/O)
 - Selection of transfer direction (specify MSB first or LSB first) for communication with a variety of devices

(Continued)

- 10-bit A/D converter (8 channels)
 - External clock input and time base timer output for startup support
- Pulse generators (PPG) with 2-program capability
 - 6-bit PPG with selection of pulse width and pulse period
 - 12-bit PPG (2 channels) with selection of pulse width and pulse period
- I2C interface circuits
- External interrupt 1 (4 channels)
 - 4 independent inputs, release enabled from standby mode (includes edge detection function)
- External interrupt 2 (8 channels)
 - 8 independent inputs, release enabled form standby mode (includes level edge detection function)
- Standby modes (low power consumption modes)
 - Stop mode (oscillator stops, virtually no power consumed)
 - Sleep mode (CPU stops, power consumption reduced to one-third)
 - Sub clock mode
 - Clock mode
- · Watchdog timer reset
- I/O ports
 - Maximum 53 ports
 - 38 general-purpose I/O ports (CMOS)
 - 2 general-purpose I/O ports (N-ch open drain)
 - 8 general-purpose output ports (N-ch open drain)
 - 5 general-purpose input ports (CMOS)

PACKAGES

■ PRODUCT LINEUP

Part number Parameter		MB89537H/537HC	MB89538H/538HC	MB89P538	MB89PV530		
LIVDE I Mass produced (Mask RC)M) I				One-time programmable	Evaluation		
R	DM capacity	32 K × 8-bit (built-in ROM)	48 K × 8-bit (built-in ROM) (built-in ROM) (write from general purpose ERPOM writer)		48 K × 8-bit (external ROM) *2		
R/	AM capacity	1 K × 8-bit		2 K × 8-bit			
Op	perating voltage	3.5 V to (MB89537H/538	5.5 V*1 H/537HC/538HC)	2.7 V to 5	.5 V		
Basic instructions : 136 Instruction bit length : 8-bits Instruction length : 1 bit to 3 bits Data bit length : 1, 8, 16-bits Minimum instruction execution time : 0.32 µs / 12.5 MHz Minimum interrupt processing time : 2.88 µs / 12.5 MHz							
ons	Ports	Input ports : 5 (4 also usable as interrupts, 2 for sub clock) Output-only ports (N-ch open drain) : 8 (8 also usable as ADC input) I/O ports (N-ch open drain) : 2 (2 also usable as SO2/SDA or SI2/SCL) I/O ports (CMOS) : 38 (21 have no other function) Total : 53					
ral functions	Time base timer		nain clock oscillation fr 2.621 ms, 20.97 ms, 3	requency of 12.5 MHz 35.5 ms)			
Peripheral	Watchdog timer			ms at mail clock frequenc s at sub clock frequency o			
	PWM timer	8-bit interval timer operation*3 (supports square wave output, operating clock period : 1, 8, 16, 64 t _{inst} *3) Pulse width measurement with 8-bit resolution (conversion period : 2 ⁸ t _{inst} *3 to 2 ⁸ × 64 t _{inst} *3) 2 channels (can also be used as interval timer, can also be used as ch1 output and ch2 count clock)					
CI	Clock prescaler Interval times at 17-bit sub clock base frequency of 32.768 kHz (approx. 31.25 ms, 0.25 s, 0.50 s, 1.00 s, 2.00 s, 4.00 s)						

(Continued)

	Part number	MB89537H/537HC	MB89538H/538HC	MB89P538	MB89PV530				
Pa	rameter								
	Pulse width count timer	(SUPPORTS SQUARE WAVE OUTPUT OPERATING CLOCK DEFINED: 1 4 32 tinest^3 external)							
	16-bit timer/ counter		(operating clock period peration (select rising,						
	Serial I/O	8 bit length Selection of LSB first or MSB first Transfer clock (2, 8, 32 tinst*3, external)							
functions	UART/SIO	CLK synchronous/CLK asynchronous data transfer capability (8, 9 bit with parity bit, or 7,8 bit without parity bit). Built-in baud rate generator provides selection of 14 baud rate settings.							
Peripheral func	UART	CLK synchronous/CLK asynchronous data transfer capability (4, 6, 7, 8 bit with parity bit, or 5, 7, 8, 9 bit without parity bit). Built-in baud rate generator provides selection of 14 baud rate settings. External clock input, 2-channel 8-bit PWM timer output also available for baud rate settings.							
	External interrupt 1		nt. ing, or both edge detec ery from standby mode		ailable in stop mode)				
	External interrupt 2	8-channel independer Can be used for recov	nt L level detection. Very from standby mode	Э.					
	6-bit PPG, 12-bit PPG	Can generate square 6-bit × 1 channel or 12	wave signals with prog 2-bit $ imes$ 2 channels.	rammable period.					
	I ² C bus interface	1-channel , compatible with Intel System Administrator bus version 1.0 and Philips I ² C specifications. 2-line communications (on MB89PV530/P538/537HC/538HC)							
	A/D converter	10-bit resolution × 8 channels. A/D conversion functions (conversion time : 60 t _{inst} *3) Supports repeated calls from external clock or internal clock. Standard voltage input provided (AVR)							
	andby modes ower saving modes)	Sleep mode, stop mod	de, sub clock mode, clo	ock mode.					
Pro	ocess	CMOS							

^{*1 :} Depends on operating frequency.

Note: MB89537H/538H have no built-in I2C functions.

To use I²C functions, choose the MB89PV530/MB89P538/537HC/538HC.

^{*2 :} Using external ROM and MBM27C512.

^{*3:} t_{inst} represents instruction execution time. This can be selected as 1/4, 1/8, 1/16, 1/64 of the main clock cycle or 1/2 of the sub clock cycle.

■ MODEL DIFFERENCES AND SELECTION CONSIDERATIONS

Part number Package	MB89537H/537HC	MB89538H/538HC	MB89P538	MB89PV530
DIP-64P-M01	0	0	0	Х
FPT-64P-M03	0	0	Х	Х
FPT-64P-M06	0	0	0	Х
FPT-64P-M09	0	0	0	Х
MDP-64C-P02	Х	Х	Х	0
MQP-64C-P01	Х	Х	Х	0

O: Model-package combination available

X : Model-package combination not available

Conversion sockets for pin pitch conversion (manufactured by Sunhayato) can be used.

Contact : Sunhayato TEL +81-3-3984-7791 (Tokyo)

■ DIFFERENCES AMONG PRODUCTS

1. Memory Capacity

When this product is used in a piggy-back or other evaluation configuration, it is necessary to carefully confirm the differences between the model being used and the product it is evaluating. Particular attention should be given to the following (see "**ECPU CORE 1.Memory Space**").

- The program ROM area starts from address 4000H on the MB89P538 and MB89PV530 models.
- Note upper limits on RAM, such as stack areas, etc.

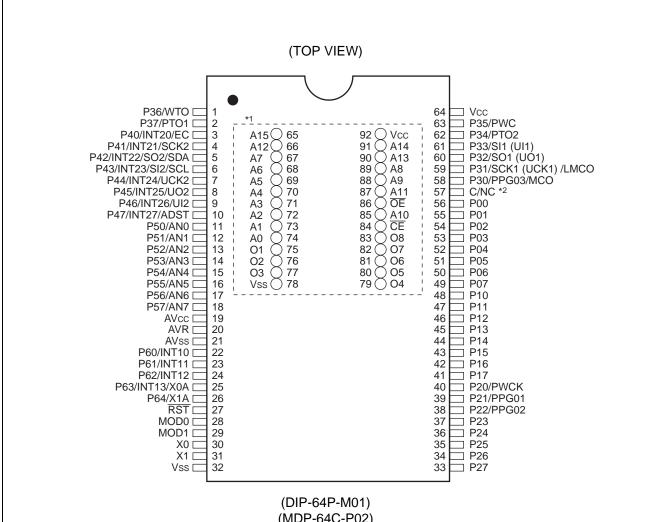
2. Current Consumption

- On the MB89PV530, the additional current consumed by the EPROM is added at the connecting socket on the back side.
- When operating at low speed, the current consumption in the one-time PROM or EPROM models is greater than on the mask ROM models. However, current consumption in sleep or stop modes is identical.

For details, refer to "ELECTRICAL CHARACTERISTICS".

3. Mask Options

The options available for use, and the method of specifying options, differ according to the model. Before use, check the "■ MASK OPTIONS" specification section.

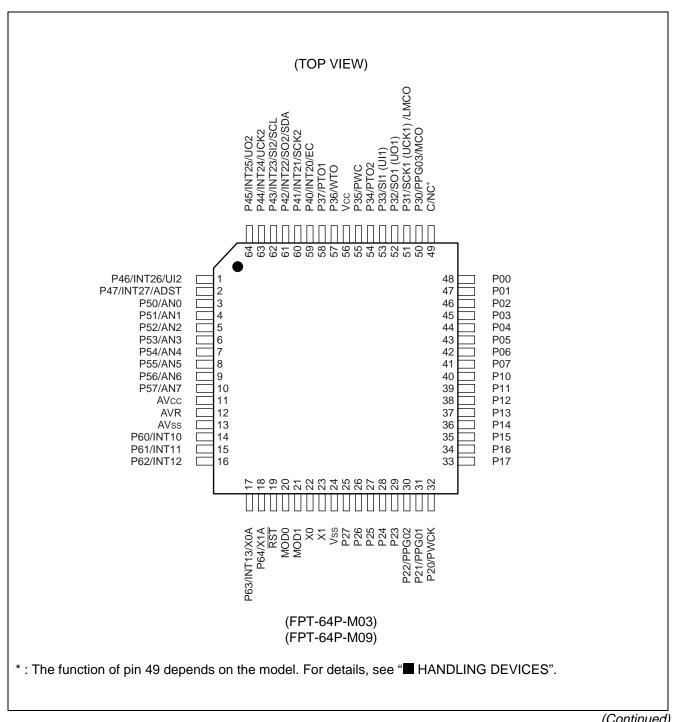

4. Wild Register Functions

The following table shows areas in which wild register functions can be used.

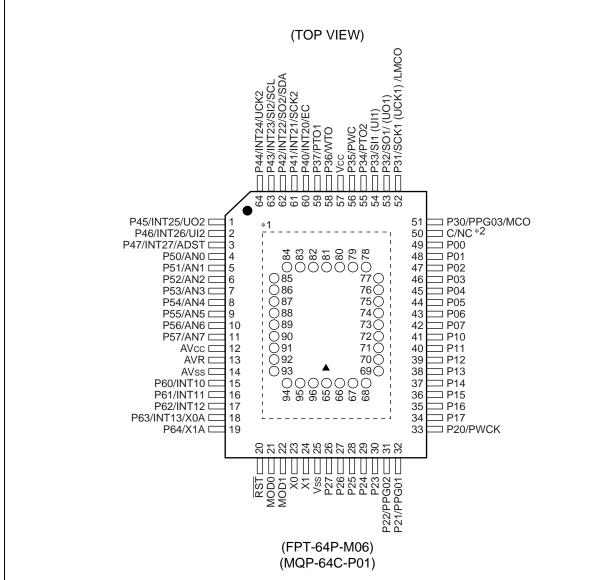
Wild Register Usage Areas

Part number	Address space		
MB89PV530	4000н to FFFFн		
MB89P538	4000н to FFFFн		
MB89537H/537HC	8000н to FFFFн		
MB89538H/538HC	4000н to FFFFн		

■ PIN ASSIGNMENTS


(MDP-64C-P02)

*1 : Package top pin assignments (MB89PV530 only)


Pin no.	Pin name						
65	A15	73	A1	81	O6	89	A8
66	A12	74	A0	82	07	90	A13
67	A7	75	01	83	O8	91	A14
68	A6	76	O2	84	CE	92	Vcc
69	A5	77	O3	85	A10		
70	A4	78	Vss	86	ŌĒ		
71	А3	79	04	87	A11		
72	A2	80	O5	88	A9		

N.C.: Internal connection only. Not for use.

^{*2 :} The function of pin 57 depends on the model. For details, see "■ HANDLING DEVICES".

*1 : Package top pin assignments (MB89PV530 only)

Pin no.	Pin name						
65	N.C.	73	A2	81	N.C.	89	ŌĒ
66	A15	74	A1	82	O4	90	N.C.
67	A12	75	A0	83	O5	91	A11
68	A7	76	N.C.	84	O6	92	A9
69	A6	77	O1	85	07	93	A8
70	A5	78	O2	86	O8	94	A13
71	A4	79	O3	87	CE	95	A14
72	A3	80	Vss	88	A10	96	Vcc

N.C.: Internal connection only. Not for use.

^{*2 :} The function of pin 50 depends on the model. For details, see "■ HANDLING DEVICES".

■ PIN DESCRIPTIONS

Pin no.		I/O				
SH-DIP*1 MDIP*2	QFP*3 MQFP*4	LQFP*5 QFP*6	Pin name	circuit type	Function	
30	23	22	X0		Connecting pins to crystal oscillator circuit or other os-	
31	24	23	X1	А	cillator circuit. The X0 pin can connect to an external clock. In that case, X1 is left open.	
28	21	20	MOD0	В	Input pins for memory access mode setting.	
29	22	21	MOD1		Connect directly to Vss.	
27	20	19	RST	С	Reset I/O pin. This pin has pull-up resistance with CMOS I/O or hysteresis input. At an internal reset request, an 'L' signal is output. An 'L' level input initializes the internal circuits.	
56 to 49	49 to 42	48 to 41	P00 to P07	D	General purpose I/O ports.	
48 to 41	41 to 34	40 to 33	P10 to P17	D	General purpose I/O ports.	
40	33	32	P20/PWCK	E	General purpose I/O port.Resource I/O pin (hysteresis input).Hysteresis input. This pin also functions as a PWC input.	
39	32	31	P21/ PPG01	D	General purpose I/O port. This pin also functions as the PPG01 output.	
38	31	30	P22/ PPG02	D	General purpose I/O port. This pin also functions as the PPG02 output.	
37	30	29	P23	D	General purpose I/O port.	
36	29	28	P24	D	General purpose I/O port.	
35	28	27	P25	D	General purpose I/O port.	
34	27	26	P26	D	General purpose I/O port.	
33	26	25	P27	D	General purpose I/O port.	
58	51	50	P30/ PPG03/ MCO	D	General purpose I/O port. This pin also functions as the PPG03 output.	
59	52	51	P31/SCK1 (UCK1) / LMCO	E	General purpose I/O port.Resource I/O pin (hysteresis input).This pin also functions as the UART/SIO clock input/output pin.	
60	53	52	P32/SO1 (UO1)	D	General purpose I/O port. This pin also functions as the UART/SIO serial data output pin.	
61	54	53	P33/SI1 (UI1)	E	General purpose I/O port.Resource input/output pin (hysteresis input).This pin also functions as the UART/ SIO serial data input pin.	
62	55	54	P34/PTO2	D	General purpose I/O port. This pin also functions as the PWM time 2 output pin.	
63	56	55	P35/PWC	Е	General purpose I/O port.Resource I/O pin (hysteresis input).This pin also functions as a PWC input.	

Pin no.		I/O			
SH-DIP*1 MDIP*2	QFP*3 MQFP*4	LQFP*5 QFP*6	Pin name	circuit type	Function
1	58	57	P36/WTO	D	General purpose I/O port.Resource output. This pin also functions as the PWC output pin.
2	59	58	P37/PTO1	D	General purpose I/O port.Resource output. This pin also functions as the PWM timer 1 output pin.
3	60	59	P40/INT20/ EC	E	General purpose I/O port.Resource I/O pin (hysteresis input)This pin also functions as an external interrupt input or 16-bit timer/counter input.
4	61	60	P41/INT21/ SCK2	E	General purpose I/O port.Resource I/O pin (hysteresis input)This pin also functions as an external interrupt input or SIO clock I/O pin.
5	62	61	P42/INT22/ SO2/SDA	G	N-ch open drain output. Resource I/O pin (hysteresis only for INT22 input) . This pin also functions as an external interrupt input, SIO serial data output, or I ² C data line.
6	63	62	P43/INT23/ SI2/SCL	G	N-ch open drain output. Resource I/O pin (hysteresis only for INT23 input) . This pin also functions as an external interrupt, SIO serial data input, or I ² C clock I/O pin.
7	64	63	P44/INT24/ UCK2	E	General purpose I/O port. Resource I/O pin (hysteresis input) . This pin also functions as an external interrupt input or UART clock I/O pin.
8	1	64	P45/INT25/ UO2	E	General purpose I/O port. Resource I/O pin (hysteresis input) . This pin also functions as an external interrupt input or UART data output pin.
9	2	1	P46/INT26/ UI2	E	General purpose I/O port. Resource I/O pin (hysteresis input) . This pin also functions as an external interrupt input or UART data input pin.
10	3	2	P47/INT27/ ADST	E	General purpose I/O port. Resource I/O pin (hysteresis input) . This pin also functions as an external interrupt input or A/D converter clock input pin.
11 to 18	4 to 11	3 to 10	P50/AN0 to P57/AN7	Н	N-ch open drain output port. This pin also functions as an A/D converter analog input pin.
22 to 24	15 to 17	14 to 16	P60/INT10 to P62/INT12	I	General purpose input port. Resource input pin (hysteresis input) . This pin also functions as an external interrupt input pin.

(Continued)

Pin no.		I/O					
SH-DIP*1 MDIP*2	QFP*3 MQFP*4	LQFP*5 QFP*6	Pin name	circuit type	Function		
25	18	17	P63/INT13/ X0A	I/A	General purpose input port. Resource input (hysteresis input) . This pin also functions as an external interrupt or sub clock pin.		
26	19	18	P64/X1A	J/A	General purpose input por This pin also functions as		
64	57	56	Vcc		Power supply pin.		
32	25	24	Vss		Ground pin (GND) .		
19	12	11	AVcc		A/D converter power supply pin.		
20	13	12	AVR		A/D converter reference voltage input pin.		
21	14	13	AVss	_	A/D converter power supply pin. Used at the same voltage level as the Vss supply.		
					MB89537H/537HC MB89538H/538HC	Capacitor connection pin for stabilizing power supply connect an external ceramic capacitor of approximately 0.1μF.	
57	50	49	С	_	MB89P538	If you select Yes for voltage step-down circuit stabilization time, this pin is fixed to Vcc. If you select No for voltage step-down circuit stabilization time, this pin is fixed to Vss.	
					MB89PV530	N.C. pin	

*1 : DIP-64P-M01

*2: MDP-64C-P02

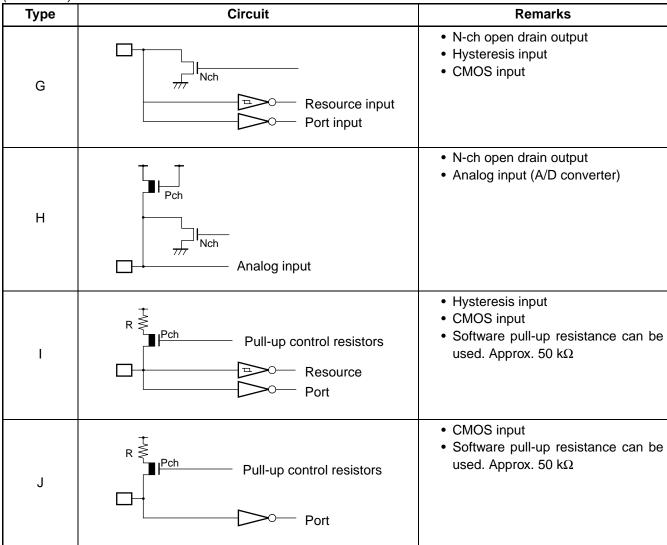
*3: FPT-64P-M06

*4: MQP-64C-P01

*5: FPT-64P-M03

*6: FPT-64P-M09

External EPROM Socket Pin Function Descriptions (MB89PV530 only)


	Pin no.		I/O Circuit	ons (MB89PV530 only)	
MDIP*1	MQFP*2	Pin name	type	Function	
65 66 67 68 69 70 71 72 73	66 67 68 69 70 71 72 73 74	A15 A12 A7 A6 A5 A4 A3 A2	0	Address output pins.	
74 75 76 77	75 77 78 79	A0 O1 O2 O3	I	Data input pins	
78	80	Vss	0	Power supply pin (GND) .	
79 80 81 82 83	82 83 84 85 86	O4 O5 O6 O7 O8	I	Data input pins.	
84	87	CE	0	ROM chip enable pin. Outputs an "H" level signal in standby mode.	
85	88	A10	0	Address output pin.	
86	89	ŌĒ	0	ROM output enable pin. Outputs "L" at all times.	
87 88 89	91 92 93	A11 A9 A8	0	Address output pins.	
90	94	A13	0		
91	95	A14	0		
92	96	Vcc	0	EPROM power supply pin.	
_	65 76 81 90	N.C.	0	Internally connected. These pins always left open.	

*1 : MDP-64C-P02

*2 : MQP-64C-P01

■ I/O CIRCUIT TYPES

Туре	Circuit	Remarks
А	X1 (X1A) Nch Pch X0 (X0A) Nch Pch Nch Pch	Oscillator feedback resistance • High speed side = approx. 1 MΩ • Low speed side = approx. 10 MΩ
В		 Hysteresis input Pull-down resistance built-in to MB89535A MB89537H/537HC MB89538H/538HC
С	R Pch Nch	 Pull-up resistance approx. 50 kΩ Hysteresis input
D	Pull-up control resistor	 CMOS I/O Software pull-up resistance can be used. Approx. 50 kΩ
E	Pull-up control resistors Port input Resource input	 CMOS I/O Software pull-up resistance can be used. Approx. 50 kΩ

■ HANDLING DEVICES

1.Preventing Latchup

Care must be taken to ensure that maximum voltage ratings are not exceeded (to prevent latchup). When CMOS integrated circuit devices are subjected to applied voltages higher than Vcc at input and output pins (other than medium- and high-withstand voltage pins), or to voltages lower than Vss, as well as when voltages in excess of rated levels are applied between Vcc and Vss, the phenomenon known as latchup can occur.

When a latchup condition occurs, supply current can increase dramatically and may destroy semiconductor elements. In using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.

Also when switching power on or off to analog systems, care must be taken that analog power supplies (AVcc, AVR) and analog input signals do not exceed the level of the digital power supply.

2. Power Supply Voltage Fluctuations

Keep supply voltage levels as stable as possible.

Even within the warranted operating range of the Vcc supply voltage, sudden changes in supply voltage can cause abnormal operation. As a measure for stability, it is recommended that the Vcc ripple fluctuation (peak to peak value) should be kept within 10% of the reference Vcc value on commercial power supply (50 Hz-60 Hz), and instantaneous voltage fluctuations such as at power-on and shutdown should be kept within a transient variability limit of 0.1V/ms.

3. Treatment of Unused Input Pins

If unused input pins are left open, abnormal operation may result. Any unused input pins should be connected to pull-up or pull-down resistance.

4. Treatment of N.C. Pins

Any pins marked 'NC' (not connected) must be left open.

5. Treatment of Power Supply Pins on Models with Built-in A/D Converter

Even when A/D converters are not in use, pins should be connected so that AVcc = Vcc and AVss = AVR = Vss.

6. Precautions for Use of External Clock

Even when an external clock signal is used, an oscillator stabilization wait period is used after a power-on reset, or escape from sub clock mode or stop mode.

7. Execution of Programs on RAM

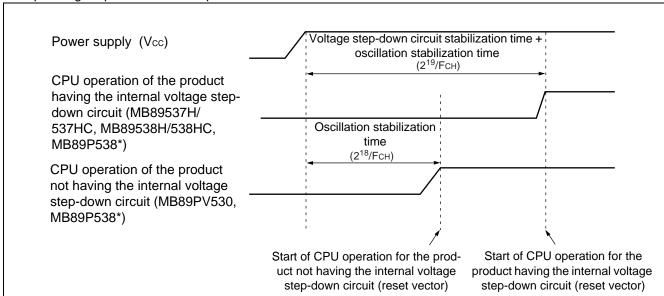
Debugging of programs executed on RAM cannot be performed even when using the MB89PV530.

8. Wild Register Functions

Wild registers cannot be debugged with the MB89PV530 and tools. To verify operations, actual in-device testing on the MB89P538 is advised.

9. Details of the C pin handling for MB89530H series

MB89530H series contains the following products and the operating characteristics vary with whether they contain the internal stepdown circuit.


Pin handling for the products depending on the internal voltage step-down circuit

Part number	Operating voltage	Operating voltage Voltage step-down circuit		Pin handling
MB89PV530	2.7 V to 5.5 V	Not included	N.C. pin	Not required
MB89P538	2.7 V to 5.5 V	Included	C pin	Fixed to Vcc
WB89P538	2.7 V to 5.5 V	Not included	Сріп	Fixed to Vss
MB89537H/537HC	3.5 V to 5.5 V	Included	C pin	0.1 μF capacitor connected
MB89538H/538HC	3.5 V to 5.5 V	Included	C pin	0.1 μF capacitor connected

The same built-in resources are used for the above product types; operating sequences after the power-on reset are different depending on whether they have the internal voltage step-down circuit.

The operating sequences after the power-on reset with the different models will be described below.

Operating sequences after the power-on reset with the different models

Fcн: Crystal oscillator frequency

*: With the MB89P538, you can select the voltage step-down circuit to be included or not by introducing the C pin handling.

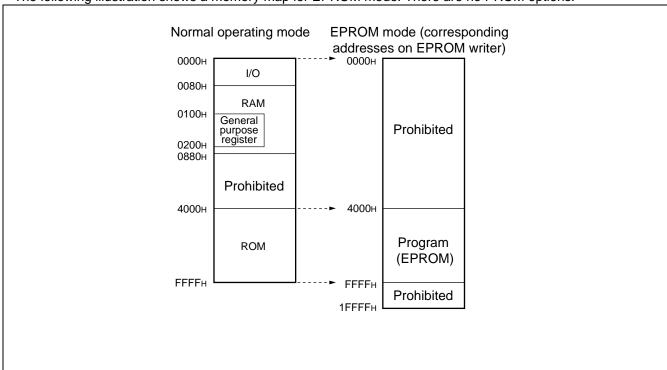
Note: As described above, CPU starts at delayed time with the product having the internal voltage step-down circuit compared with the product not having the internal voltage step-down circuit. This is because the time should be allowed for the stabilization time for voltage step-down circuit for normal operation.

■ ONE-TIME WRITING SPECIFICATIONS WITH PROM AND EPROM MICROCONTROLLERS

The MB89P538 has a PROM mode with functions equivalent to the MBM27C1001, allowing writing with a general purpose ROM writer using a proprietary adapter. Note, however, that the use of electronic signature mode is not supported.

• ROM writer adapters

With some ROM writers, stability of writing performance is enhanced by placing an $0.1\mu F$ capacitor between the Vcc and Vss pins. The following table lists adapters for use with ROM writers.

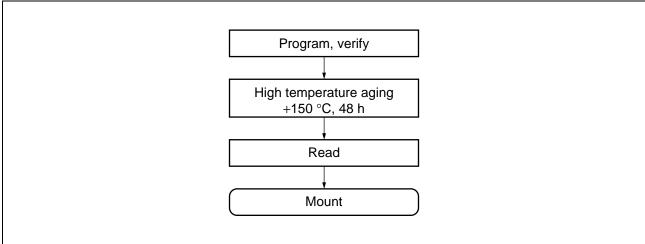

ROM Writer Adapters

Part number	Package	Compatible adapter
MB89P538-101PF MB89P538-201PF	FPT-64P-M06	ROM-64QF-32DP-8LA2*
MB89P538-101PFM MB89P538-201PFM	FPT-64P-M09	ROM-64QF2-32DP-8LA
MB89P538-101P-SH MB89P538-201P-SH	DIP-64P-M01	ROM-64SD-32DP-8LA2*

Inquiries should be addressed to Sunhayato, Ltd., : TEL +81-3-3984-7791

• Memory map for EPROM mode

The following illustration shows a memory map for EPROM mode. There are no PROM options.



^{*:} Version 3 or later should be used.

• Recommended screening conditions

Before one-time writing of microcontroller programs to PROM, high temperature aging is recommended as a

screening process for chips before they are mounted.

• About writing yields

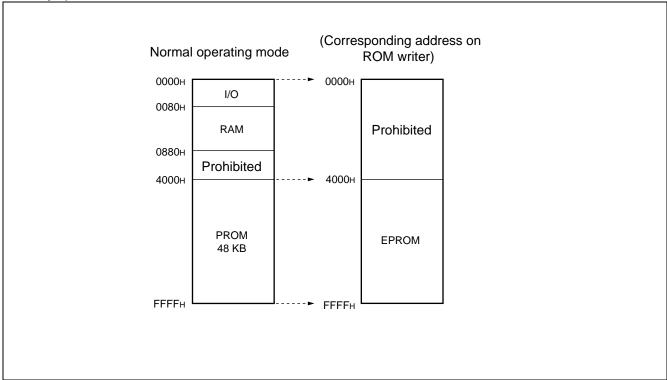
The nature of chips before one-time writing of microcontroller programs to PROM prevents the use of all-bit writing tests. Therefore it is not possible to guarantee writing yields of 100% in some cases.

■ EPROM WRITING TO PIGGY-BACK/EVALUATION CHIPS

This section describes methods of writing to EPROM on piggy-back/evaluation chips.

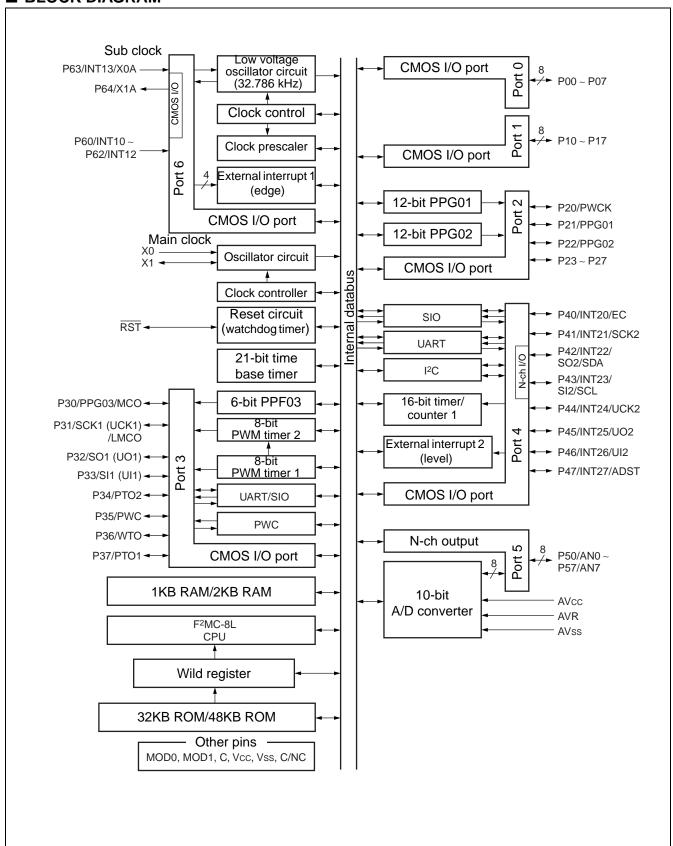
• EPROM model

MBM27C512-20TV


• Writer adapter

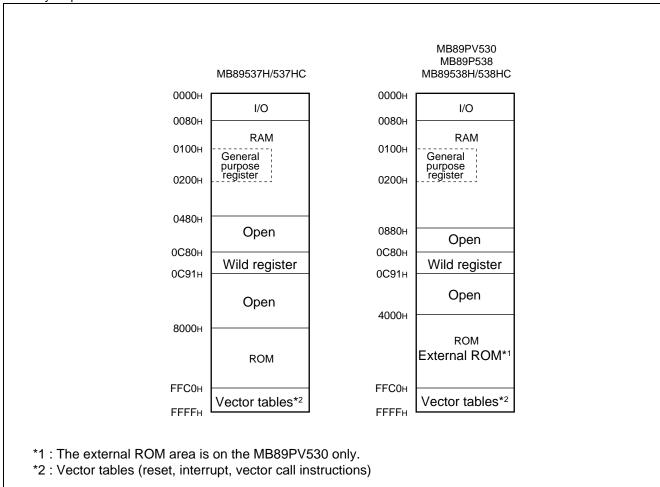
For writing to EPROM using a ROM writer, use one of the writer adapters shown below (manufactured by Sunhavato).

Package	Adapter socket model
LCC-32 (rectangular)	ROM-32LC-28DP-YG


Inquiries should be addressed to Sunhayato, Ltd., : TEL +81-3-3984-7791

- Writing to EPROM
 - 1) Set up the EPROM writer for the MBM27C512.
 - 2) Load program data to the ERPOM writer, in the area 4000H FFFFH.
 - 3) Use the EPROM writer to write to the area 4000_H FFFF_H.

■ BLOCK DIAGRAM



■ CPU CORE

1. Memory Space

The MB89530H series has 64 KB of memory space, containing all I/O, data areas, and program areas. The I/O area is located at the lowest addresses, with the data area placed immediately above. The data area can be partitioned into register areas, stack areas, or direct access areas depending on the application. The program area is located at the opposite end of memory, closest to the highest addresses, and the highest part of this area is assigned to the tables of interrupt and reset vectors and vector call instructions. The following diagram shows the structure of memory space in the MB89530H series.

2. Registers

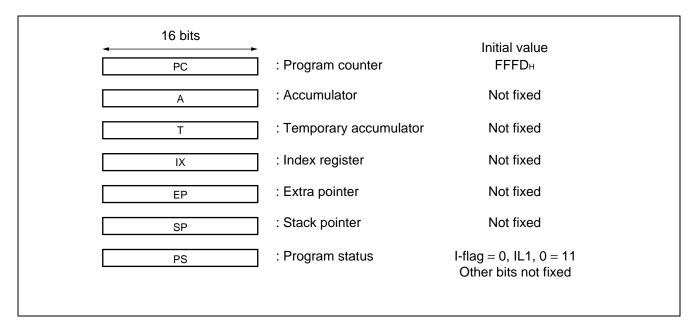
The F²MC-8L series has two types of registers, dedicated-use registers within the CPU, and general-purpose registers in memory.

Program counter (PC) : 16-bit length, shows the location where instructions are stored.

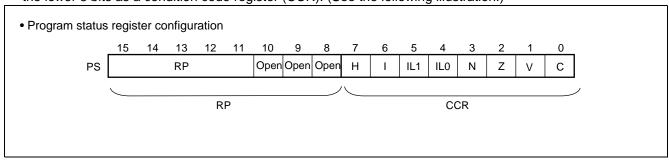
Accumulator (A) : 16-bit length, a temporary memory register for calculation operations.

The lower byte is used for 8-bit data processing instructions.

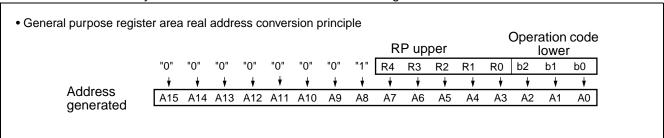
Temporary accumulator (T) : 16-bit length, performs calculations with the accumulator.


The lower byte is used for 8-bit data processing instructions.

Index register (IX) : 16-bit length, a register for index modification.


Extra pointer (EP) : 16-bit length, a pointer indicating memory addresses.

Stack pointer (SP) : 16-bit length, indicates stack areas.


Program status (PS) : 16-bit length, contains register pointer and condition code.

In addition, the PS register can be divided so that the upper 8 bits are used as a register bank pointer (RP), and the lower 8 bits as a condition code register (CCR). (See the following illustration.)

The RP register shows the address of the register bank currently being used, so that the RP value and the actual address are related by the conversion rule shown in the following illustration.

The CCR register has bits that show the content of results of calculations and transferred data, and bits that control CPU operation during interrupts.

H-flag : Set to 1 if calculations result in carry or borrow operations from bit 3 to bit 4, otherwise set to 0.

This flag is used for decimal correction instructions.

I-flag : This flag is set to 1 if interrupts are enabled, and 0 if interrupts are prohibited.

The default value at reset is 0.

IL1, 0 : Indicates the level of the currently permitted interrupts.

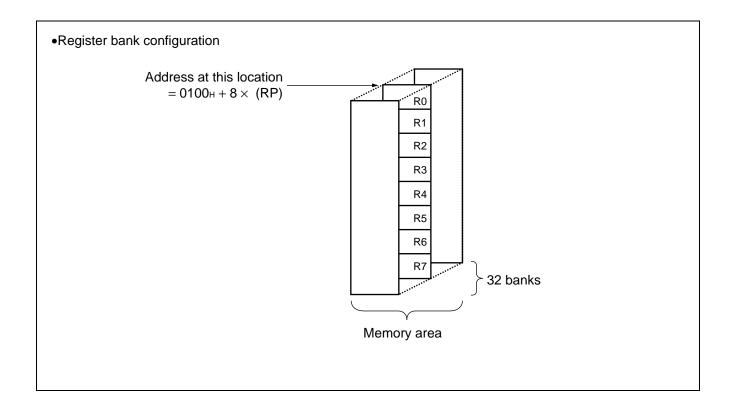
Only interrupt requests having a more powerful level than the value of these bits will be processed.

IL1	IL0	Interrupt level	Strength
0	0	1	Strong
0	1	I	†
1	0	2	\
1	1	3	Weak

N-flag : Set to 1 if the highest bit is 1 after a calculation, otherwise cleared to 0.

Z-flag : Set to 1 if a calculation result is 0, otherwise cleared to 0.

V-flag : Set to 1 if a two's complement overflow results during a calculation, otherwise cleared to 0.


C-flag : Set to 1 if a calculation results in a carry or borrow operation from bit 7, otherwise cleared to 0.

This is also the shift-out value in a shift instruction.

In addition, the following general purpose registers are available.

General purpose registers: 8-bit length, used to contain data.

The general purpose registers are 8-bit registers located in memory. There are eight such registers per bank, and the MB89530H series have up to 32 banks for use. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address Register name		Register description	Write/Read	Initial value
00н	PDR0	Port 0 data register	R/W	XXXXXXXX
01н	DDR0	Port 0 direction register	W	0000000 _B
02н	PDR1	Port 1 data register	R/W	XXXXXXXX
03н	DDR1	Port 1 direction register	W	0000000 _B
04н to 06н		(Reserved area)	-1	1
07н	SYCC	System clock control register	R/W	Х-1 ММ1 0 Ов
08н	STBC	Standby control register	R/W	00010в
09н	WDTC	Watchdog control register	R/W	0 XXXXB
0Ан	TBTC	Time base timer control register	R/W	00000в
0Вн	WPCR	Clock prescaler control register	R/W	00000в
0Сн	PDR2	Port 2 data register	R/W	XXXXXXXX
0Dн	DDR2	Port 2 direction register	R/W	00000000в
0Ен	PDR3	Port 3 data register	R/W	XXXXXXXX
0Fн	DDR3	Port 3 direction register	R/W	00000000в
10н	PDR4	Port 4 data register	R/W	XXXX 1 1 XX _B
11н	DDR4	Port 4 direction register	R/W	000000в
12н	PDR5	Port 5 data register	R/W	11111111в
13н	PDR6	Port 6 data register	R	XXXXXXXX
14н to 21н		(Reserved area)	-	1
22н	SMC11	Serial mode control register 1 (UART)	R/W	00000000
23н	SRC1	Serial rate control register (UART)	R/W	011000в
24н	SSD1	Serial status and data register (UART)	R/W	00100-1X _B
25н	SIDR1/ SODR1	Serial input/output data register (UART)	R/W	XXXXXXXXB
26н	SMC12	Serial mode control register 2 (UART)	R/W	100001в
27н	CNTR1	PWM control register 1	R/W	00000000в
28н	CNTR2	PWM control register 2	R/W	000-0000в
29н	CNTR3	PWM control register 3	R/W	-000в
2Ан	COMR1	PWM compare register 1	W	XXXXXXXX
2Вн	COMR2	PWM compare register 2	W	XXXXXXXXB
2Сн	PCR1	PWC pulse width control register 1	R/W	000000в
2Dн	PCR2	PWC pulse width control register 2	R/W	0000000B
2Ен	RLBR	PWC reload buffer register	R/W	XXXXXXXXB
2Fн	SMC21	Serial mode control register 1 (UART/SIO)	R/W	0000000 _B
30н	SMC22	Serial mode control register 2 (UART/SIO)		0000000 _B
31н	SSD2	Serial status and data register (UART/SIO)	R/W	00001в
32н	SIDR2/ SODR2	Serial data register (UART/SIO)	R/W	XXXXXXXXB
33н	SRC2	Baud rate generator reload register	R/W	XXXXXXXX

Address	Register name	Register description	Write/Read	Initial value
34н	ADC1	A/D control register 1	R/W	00000-0в
35н	ADC2	A/D control register 2	R/W	-000001в
36н	ADDL	A/D data register low	R/W	XXXXXXXXB
37н	ADDH	A/D data register high	R/W	00в
38н	PPGC2	PPG2 control register (12-bit PPG)	R/W	0000000B
39н	PRL22	PPG2 reload register 2 (12-bit PPG)	R/W	0Х00000В
ЗАн	PRL21	PPG2 reload register 1 (12-bit PPG)	R/W	ХХ000000в
3Вн	PRL23	PPG2 reload register 3 (12-bit PPG)	R/W	ХХ000000в
3Сн	TMCR	16-bit timer control register	R/W	000000в
3Dн	TCHR	16-bit timer counter register high	R/W	00000000
3Ен	TCLR	16-bit timer counter register low	R/W	00000000
3Fн	EIC1	External interrupt 1 control register 1	R/W	00000000
40н	EIC2	External interrupt 1 control register 2	R/W	00000000
41н to 48н		(Reserved area)		
49н	DDCR	DDC select register	R/W	Ов
4Ан to 4Вн		(Reserved area)		l
4Сн	PPGC1	PPG1 control register (12-bit PPG)	R/W	0000000B
4Dн	PRL12	PPG1 reload register 2 (12-bit PPG)	R/W	0Х00000В
4Ен	PRL11	PPG1 reload register 1 (12-bit PPG)	R/W	ХХ000000в
4Fн	PRL13	PPG1 reload register 3 (12-bit PPG)	R/W	ХХ000000в
50н	IACR	I ² C address control register	R/W	000В
51н	IBSR	I ² C bus status register	R	00000000
52н	IBCR	I ² C bus control register	R/W	00000000
53н	ICCR	I ² C clock control register	R/W	000XXXXXB
54н	IADR	I ² C address register	R/W	- XXXXXXXB
55н	IDAR	I ² C data register	R/W	XXXXXXXX
56н	EIE2	External interrupt 2 control register	R/W	00000000
57н	EIF2	External interrupt 2 flag register	R/W	Ов
58н	RCR1	6-bit PPG control register 1	R/W	00000000
59н	RCR2	6-bit PPG control register 2	R/W	0Х00000в
5Ан	CKR	Clock output control register	R/W	00в
5Вн to 6Fн		(Reserved area)	L	
70н	SMR	Serial mode register (SIO)	R/W	0000000 _B
71н	SDR	Serial data register (SIO)	R/W	XXXXXXXX
72н	PURR0	Port 0 pull-up resistance register	R/W	11111111в
73н	PURR1	Port 1 pull-up resistance register	R/W	11111111
74н	PURR2	Port 2 pull-up resistance register	R/W	11111111
75н	PURR3	Port 3 pull-up resistance register	R/W	11111111
76н	PURR4	Port 4 pull-up resistance register	R/W	111111в

(Continued)

Address	Register name	Register description	Write/Read	Initial value
77н	WREN	Wild register enable register	R/W	000000B
78н	WROR	Wild register data test register	R/W	000000B
79н	PURR6	Port 6 pull-up resistance register	R/W	111111в
7Ан		(Reserved area)		
7Вн	ILR1	Interrupt level setting register 1	W	11111111в
7Сн	ILR2	Interrupt level setting register 2	W	11111111в
7Dн	ILR3	Interrupt level setting register 3	W	11111111в
7Е н	ILR4	Interrupt level setting register 4	W	11111111в
7 Fн	ITR	Interrupt test register	Access prohibited	XXXXXX0 0 _B
С80н	WRARH1	Upper address setting register 1	R/W	XXXXXXX
С81н	WRARL1	Lower address setting register 1 R/W		XXXXXXX
С82н	WRDR1	Data setting register 1	R/W	XXXXXXX
С83н	WRARH2	Upper address setting register 2	R/W	XXXXXXX
С84н	WRARL2	Lower address setting register 2	R/W	XXXXXXX
С85н	WRDR2	Data setting register 2	R/W	XXXXXXX
С86н	WRARH3	Upper address setting register 3	R/W	XXXXXXX
С87н	WRARL3	Lower address setting register 3	R/W	XXXXXXX
С88н	WRDR3	Data setting register 3	R/W	XXXXXXX
С89н	WRARH4	Upper address setting register 4	R/W	XXXXXXX
С8Ан	WRARL4	Lower address setting register 4	R/W	XXXXXXX
С8Вн	WRDR4	Data setting register 4	R/W	XXXXXXX
С8Сн	WRARH5	Upper address setting register 5	R/W	XXXXXXX
C8D _H	WRARL5	Lower address setting register 5	R/W	XXXXXXX
С8Ен	WRDR5	Data setting register 5	R/W	XXXXXXXX
С8Fн	WRARH6	Upper address setting register 6 R/W		XXXXXXXX
С90н	WRARL6	Lower address setting register 6	R/W	XXXXXXX
С91н	WRDR6	Data setting register 6	R/W	XXXXXXX

• Description of write/read symbols :

R/W : read/write enabled

R : Read only W : Write only

• Description of initial values :

0 : This bit initialized to "0".1 : This bit initialized to "1".

X : The initial value of this bit is not determined.M : The initial value of this bit is a mask option.

- : This bit is not used.

Note: Do not use reserved spaces.

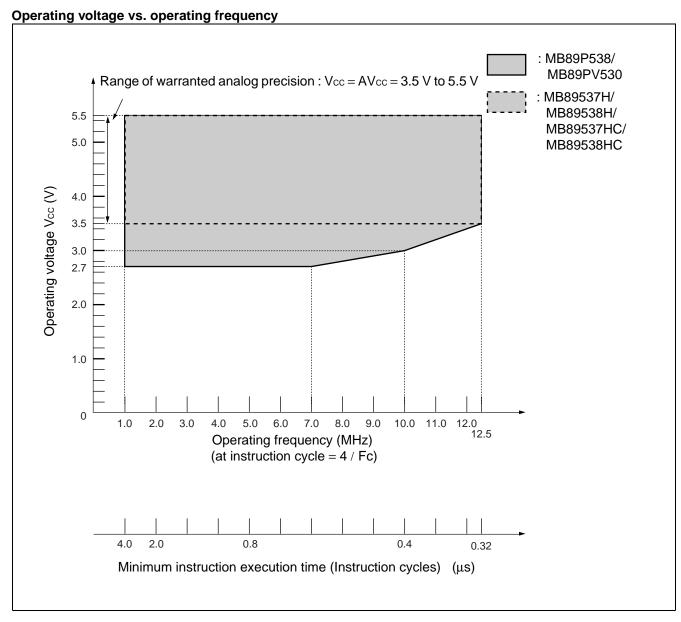
■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0 V)

Doromotor	Cumbal	Rat	ing	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
Supply voltage	Vcc, AVcc	Vss - 0.3	Vss + 6.0	V	MB89537H/538H* MB89537HC/538HC
Cappi, remage	AVR	Vss - 0.3	Vss + 6.0	V	MB89P538 MB89PV530
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	Other than P42, P43
input voitage	VI	Vss - 0.3	Vss + 6.0	V	P42, P43
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V	Other than P42, P43
Output voltage	VO	Vss - 0.3	Vss + 6.0	V	P42, P43
"L" level maximum output current	loL	_	15	mA	
"L" level average output current	lolav	_	4	mA	Average value (operating current × operating duty)
"L" level maximum total output current	Σ loL	_	100	mA	
"L" level average total output current	Σ lolav	_	40	mA	Average value (operating current × operating duty)
"H" level maximum output current	Іон	_	-15	mA	
"H" level average output current	Іонаv	_	-4	mA	Average value (operating current × operating duty)
"H" level maximum total output current	ΣІон	_	-50	mA	
"H" level average total output current	ΣΙομαν	_	-20	mA	Average value (operating current × operating duty)
Current consumption	P□	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

 $^{^{\}star}$: AVcc and Vcc are to be used at the same potential. AVR should not exceed AVcc + 0.3V.


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0 V)

Parameter	Symbol	Value		Unit	it Remarks			
Faranteter	Syllibol	Min	Max	Ollic	remarks			
Supply voltage		3.5*	5.5	V	Range warranted for normal operation	MB89537H/538H MB89537HC/		
	Vcc, AVcc	3.0	5.5	V	RAM status in stop mode	538HC		
		2.7*	5.5	V	Range warranted for normal operation	MB89P538 MB89PV530		
		1.5	5.5	V	RAM status in stop mode	WIDO9F V330		
	AVR	3.5	AVcc	V				
Operating temperature	TA	-40	+85	°C				

^{*:} Varies according to frequency used, and instruction cycle. See "Operating voltage vs. operating frequency" and "5. A/D Converter Electrical Characteristics".

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(AVcc = Vcc = 5.0 V, AVss = Vss = 0 V, $T_A = -40$ °C to +85 °C)

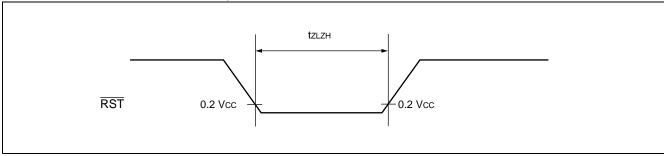
					Value			
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	Vıн	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P64, SI1, SI2	_	0.7 Vcc	—	Vcc + 0.3	٧	
"H" level input voltage	Vihs	RST, MOD0, MOD1, INT20 to INT27, UCK1, UI1, INT10 to INT13, SCK1, EC, PWCK, PWC, SCK2, UCK2, UI2, ADST	_	0.8 Vcc		Vcc + 0.3	V	
	VIHSMB	SCL, SDA	_	Vss + 1.4	_	Vss + 5.5	V	With SMB input buffer selected*
	V _{IHI2C}	GOL, GDA	_	0.7 Vcc	_	Vss + 5.5	V	With I ² C input buffer selected*
	VIL	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P64, SI1, SI2	_	Vss - 0.3		0.3 Vcc	V	
"L" level input voltage	VILS	RST, MOD0, MOD1, INT20 to INT27, UCK1, UI1, INT10 to INT13, SCK1, EC, PWCK, PWC, SCK2, UCK2, UI2, ADST	_	Vss - 0.3	_	0.2 Vcc	V	
	VILSMB	SCI SDA	_	Vss - 0.3	_	Vss + 0.6	٧	With SMB input buffer selected*
	VILI2C	SCL, SDA		Vss - 0.3	_	0.3 Vcc	V	With I ² C input buffer selected*
Open drain	V _{D1}	P50 to P57		.,		Vcc + 0.3	V	
output applied voltage	V_{D2}	P42, P43		Vss - 0.3		Vss + 5.5	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P24, P30 to P37, P40, P41, P44 to P47	Iон = -2.0 mA	4.0	_	_	V	
		P25 to P27	Iон = -3.0 mA					
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, RST	IoL = 4.0 mA	_	—	0.4	V	

(AVcc = Vcc = 5.0 V, AVss = Vss = 0 V, $T_A = -40$ °C to +85 °C)

	Sym-				Value			
Parameter	bol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
Input leak current (Hi-Z output leak current)	lu	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P64	0.0 V < V _I < V _{CC}	-5	_	+5	μΑ	With no pull-up resistance specified
Open drain output leak current	ILIOD	P42, P43	0.0 V < V _I < V _{SS} + 5.5 V	_	_	+5	μА	
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40, P41, P44 to P47, P60 to P64, RST	Vı = 0.0 V	25	50	100	kΩ	With pull-up resistance is selected. The RST signal is excluded.
			FcH =	_	15	20	mA	MB89P538/PV530
	lcc ₂		10.0 MHz $V_{CC} = 5.0 \text{ V}$ $t_{inst} = 0.4 \mu\text{s}$	_	6	10	mA	MB89537H/538H MB89537HC/538HC
			FcH =	_	5	8.5	mA	MB89P538/PV530
			10.0 MHz $V_{CC} = 5.0 \text{ V}$ $t_{inst} = 6.4 \mu\text{s}$	_	1.5	3	mA	MB89537H/538H MB89537HC/538HC
			F _{CH} = 10.0 MHz	_	5	7	mA	Sleep mode MB89P538/PV530
	Iccs ₁		$V_{\text{CC}} = 5.0 \text{ V}$ $t_{\text{inst}} = 0.4 \mu\text{s}$	_	2	4	mA	Sleep mode MB89537H/538H MB89537HC/538HC
Supply current		Vcc	F _{CH} = 10.0 MHz	_	1.5	3	mA	Sleep mode MB89P538/PV530
	Iccs ₂	ICCS2	$Vcc = 5.0 V$ $t_{inst} = 6.4 \mu s$	_	1	2	mA	Sleep mode MB89537H/538H MB89537HC/538HC
			FcL =		3	7	mA	Sub mode MB89P538/PV530
	ICCL		32.768 kHz Vcc = 5.0 V	_	20	50	μΑ	Sub mode MB89537H/538H MB89537HC/538HC
			FcL =	_	30	50	μΑ	Sub, sleep modes MB89P538/PV530
	Iccls	32.768 kHz Vcc = 5.0 V		15	30	μΑ	Sub, sleep modes MB89537H/538H MB89537HC/538HC	

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
raiametei	Syllibol	riii iiaiiie	Condition	Min	Тур	Max	Oilit	Remarks
Supply current	Ісст	Vcc	F _{CL} = 32.768 kHz V _{CC} = 5.0 V		5	15	μΑ	Clock mode, main stop
	Іссн		T _A = +25 °C		3	10	μΑ	Sub, stop modes
	lΑ	AVcc	F _{CH} = 10.0 MHz	_	4	6	mA	A/D conversion running
	Іан		T _A = +25 °C		1	5	μΑ	A/D stopped
Input capacitance	Cin	Except Vcc, Vss, AVcc, AVss	f = 1 MHz		10		pF	

^{*:} MB89PV530/P538/537HC/538HC have a built-in I²C function, and a choice of input buffers by software setting. MB89537H/538H have no built-in I²C functions, and therefore this standard does not apply.

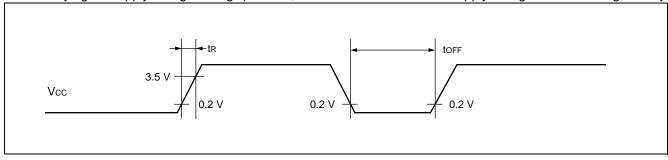

4. AC Characteristics

(1) Reset Timing

$$(Vcc = 5.0 \text{ V}, \text{ AVss} = \text{Vss} = 0 \text{ V}, \text{ T}_A = -40 \,^{\circ}\text{C to} +85 \,^{\circ}\text{C})$$

Parameter	Svmbol	Condition	Value		Unit	Remarks
	Symbol Cond	Condition	Min	Max	Offic	Kemarks
RST "L" pulse width	t zlzh		48 tholy	_	ns	

Note: thou is the main clock oscillator period.

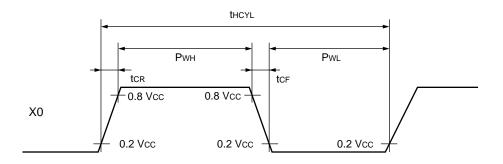


(2) Power-on Reset

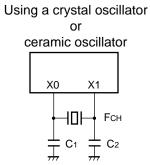
(AVss = Vss = 0 V,
$$T_A = -40~^{\circ}C$$
 to +85 $^{\circ}C$)

Parameter	Symbol	Condition	Va	lue	Unit	Remarks
			Min	Max		
Power on time	t R	_	0.5	50	ms	
Power shutoff time	toff	_	1	_	ms	For repeated operation

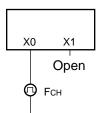
Note: Be sure that the power supply will come on within the selected oscillator stabilization period. Also, when varying the supply voltage during operation, it is recommended that the supply voltage be increased gradually.

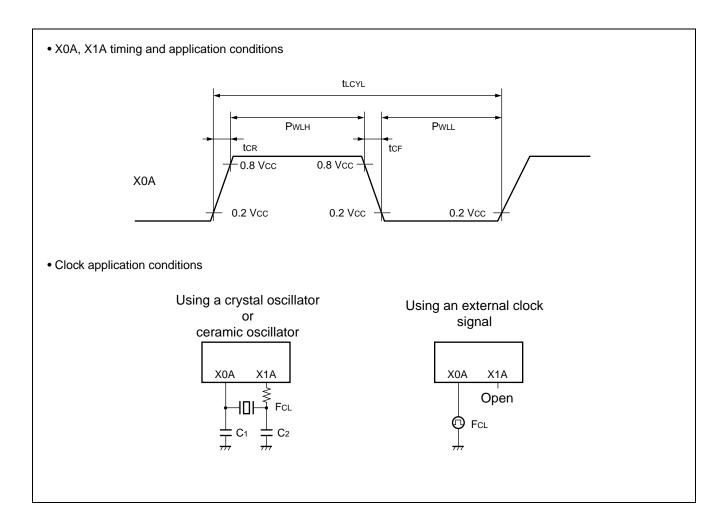


(3) Clock Timing Standards


(AVss = Vss = 0 V,
$$T_A = -40$$
 °C to +85 °C)

Parameter	Symbol	Pins	Condition -	Value			Unit	Remarks
				Min	Тур	Max	Unit	Remarks
Clock frequency	Fсн	X0, X1		1	_	12.5	MHz	Main clock
	FcL	X0A, X1A		_	32.768	_	kHz	Sub clock
Clock cycle time	t HCYL	X0, X1		80	_	1000	ns	Main clock
	t LCYL	X0A, X1A		_	30.5	_	μs	Sub clock
Input clock pulse width	Pwh PwL	X0	_	20	_	_	ns	External clock
	Pwhh Pwll	X0A		_	15.2	_	μs	External clock
Input clock rise, fall time	tcr tcr	X0		_		10	ns	External clock


• X0, X1 timing and application conditions

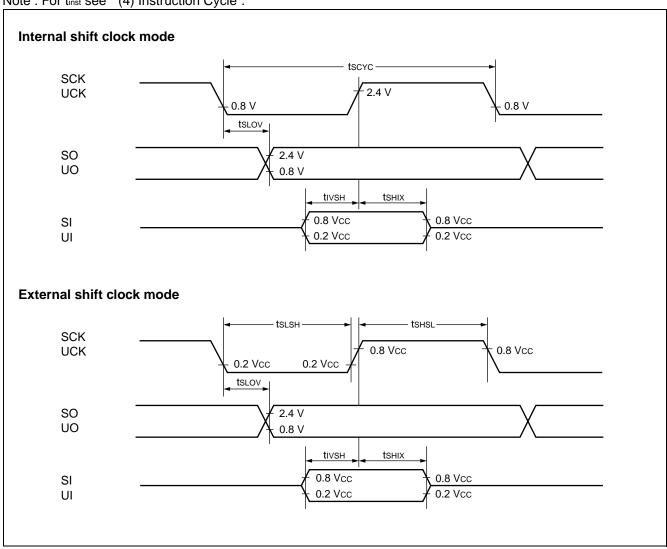


• Clock application conditions

Using an external clock signal

(4) Instruction Cycle

(AVss = Vss = 0 V, $T_A = -40$ °C to +85 °C)

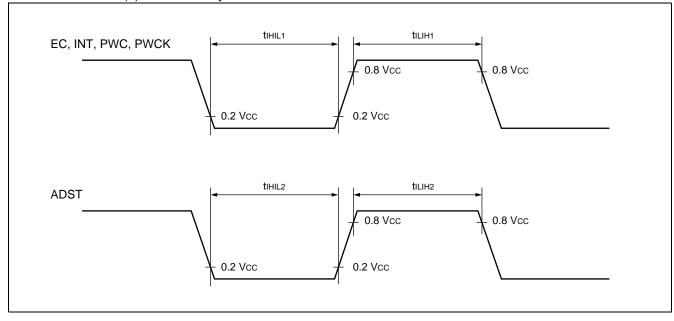

Parameter	Symbol	Rated value	Unit	Remarks	
Instruction cycle (minimum instruction execution time)	t inst	4/Гсн, 8/Гсн, 16/Гсн, 64/Гсн	μs	Operating at FcH = 12.5 MHz (4/FcH) tinst = 0.32 μs	
		2/FcL	μs	Operating at FcL = 32.768 kHz t_{inst} = 61.036 μs	

(5) Serial I/O Timing

(Vcc = 5.0 V, AVss = Vss = 0 V, $T_A = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$)

Parameter	Sym- bol	Pin name	Condition	Value		Unit	Remarks
raiailletei				Min	Max	Oill	ixemarks
Serial clock cycle time	tscyc	SCK, UCK		2 tinst	_	μs	
SCK↓→SO	t sLov	SCK, SO, UCK, UO	Internal clock operation	-200	+ 200	ns	
Valid SI→SCK↑	t ıvsH	SI, SCK, UI, UCK		200	_	ns	
SCK↑→valid SI hold time	t shix	SCK, SI, UCK, UI		200	_	ns	
Serial clock "H" pulse width	t shsl	SCK, UCK		1 tinst	_	μs	
Serial clock "L" pulse width	t slsh	SCK, UCK	External	1 tinst	_	μs	
SCK↓→SO time	t sLov		clock	0	200	ns	
Valid SI→SCK↑	tıvsh	SI, SCK, UI, UCK	operation	200	_	ns	
SCK↑→ valid SI hold time	t shix	SCK, SI, UCK, UI		200	_	ns	

Note: For tinst see "(4) Instruction Cycle".

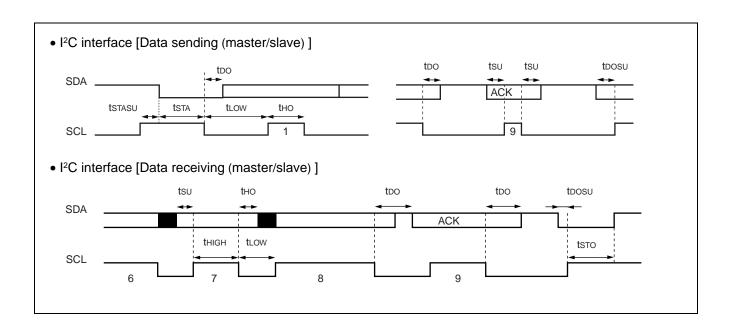


(6) Peripheral Input Timing

(Vcc = 5.0 V, AVss = Vss = 0 V, $T_A = -40$ °C to +85 °C)

Parameter	Symbol	Pin name	Condition	Val	lue	Unit	Remarks
	Syllibol			Min	Max		
Peripheral input "H" level pulse width 1	tıLIH1	INT10 to INT13, INT20 to INT27,	_	2 tinst	_	μs	
Peripheral input "L" level pulse width 1	t _{IHIL1}	EC, PWC, PWCK	_	2 tinst	_	μs	
Peripheral input "H" level pulse width 2	t _{ILIH2}	ADST	_	2 ⁸ t _{inst}	_	μs	
Peripheral input "L" level pulse width 2	t _{IHIL2}	ADST	_	2 ⁸ tinst	_	μs	

Note: For tinst see " (4) Instruction Cycle".


(7) I2C Timing

 $(Vcc = 5.0 \text{ V}, \text{ AVss} = \text{Vss} = 0 \text{ V}, \text{ T}_A = -40 \,^{\circ}\text{C to} +85 \,^{\circ}\text{C})$

				, , ,			
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
i di diliotoi	Cymbol	name	Condition	Min	Max	Oilit	Remarks
Start condition output	t sta	SCL SDA	_	$\begin{array}{c} 1 \; / \; 4 \; t_{inst} \times \\ m \times n - 20 \end{array}$	$\begin{array}{c} 1 \ / \ 4 \ t_{inst} \times \\ m \times n + 20 \end{array}$	ns	Master only
Stop condition output	t sto	SCL SDA	_	$\begin{array}{c} 1 \ / \ 4 \ t_{inst} \times \\ (m \times n + 8) \ - 20 \end{array}$	$\begin{array}{c} 1 \ / \ 4 \ t_{inst} \times \\ (m \times n + 8) \ + 20 \end{array}$	ns	Master only
Start condition detection	t sta	SCL SDA	_	$1 / 4 t_{inst} \times 6 + 40$		ns	
Stop condition detection	t sto	SCL SDA	_	1 / 4 t _{inst} × 6 + 40		ns	
Restart condition output	t stasu	SCL SDA	_	$\begin{array}{c} 1 \; / \; 4 \; t_{inst} \times \\ (m \times n + 8) \; - 20 \end{array}$	$\begin{array}{c} 1 \ / \ 4 \ t_{inst} \times \\ (m \times n + 8) \ + 20 \end{array}$	ns	Master only
Restart condition detection	t stasu	SCL SDA	_	1 / 4 $t_{inst} \times 4 + 40$	1	ns	
SCL output "L" width	t LOW	SCL	_	$\begin{array}{l} 1 \; / \; 4 \; t_{\text{inst}} \times \\ m \times n - 20 \end{array}$	$\begin{array}{l} 1 \; / \; 4 \; t_{inst} \times \\ m \times n \; + \; 20 \end{array}$	ns	Master only
SCL output "H" width	t HIGH	SCL	_	$\begin{array}{c} 1 \ / \ 4 \ t_{inst} \times \\ (m \times n + 8) \ - 20 \end{array}$	$\begin{array}{c} 1 \ / \ 4 \ t_{inst} \times \\ (m \times n + 8) \ + 20 \end{array}$	ns	Master only
SDA output delay time	t₀o	SDA		$1~/~4~t_{\text{inst}}\times 4-20$	$1 \; / \; 4 \; t_{\text{inst}} \times 4 \; + \; 20$	ns	
Setup after SDA output interrupt interval	t DOSU	SDA	_	1 / 4 t _{inst} × 4 – 20	_	ns	
SCL input "L" width	t LOW	SCL	_	$1 / 4 t_{\text{inst}} \times 6 + 40$	_	ns	
SCL input "H" width	t HIGH	SCL	_	$1 / 4 t_{inst} \times 2 + 40$	_	ns	
SDA input setup	t su	SDA	_	40	_	ns	
SDA input hold	tно	SDA		0		ns	

Notes: • For t_{inst} see " (4) The Instruction Cycle".

- The value "m" in the above table is the value from the shift clock frequency setting bits (CS4-CS3) in the clock control register "ICCR". For details, refer to the register description in the hardware manual.
- The value 'n' in the above table is the value from the shift clock frequency setting bits (CS2-CS0) in the clock control register "ICCR". For details, refer to the register description in the hardware manual.
- toosu appears when the interrupt period is longer than the SCL "L" width.
- The rated values for SDA and SCL assume a start up time of 0 ns.

5. A/D Converter Electrical Characteristics

(1) MB89537H/538H/537HC/538HC

(Vcc = 3.5 V to 5.5 V, AVss = Vss = 0 V, $T_A = -40$ °C to +85 °C)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
Farameter	Symbol	Pili liaille		Min	Тур	Max	Onit	iveillai ks
Resolution capability			_	_	_	10	bit	
Total error				_	_	±5.0	LSB	
Linear error	_			_	_	±2.5	LSB	
Differential linear error				_	_	±1.9	LSB	
Zero transition voltage	Vот	_	AVR = AVcc	AVss-3.5 LSB	AVss+0.5 LSB	AVss+4.5 LSB	mV	
Full scale transition voltage	VFST			AVR-6.5 LSB	AVR-1.5 LSB	AVR+1.5 LSB	mV	
Inter-channel variation				_		4.0	LSB	
Conversion time	<u> </u>			_	60 t _{inst}	_	μs	*
Sampling time				_	16 tinst	_	μs	
Analog input current	IAIN	AN0 to	_	_		10	μΑ	
Analog input voltage	Vain	AN7	N7	AVss	_	AVR	V	
Reference voltage	_			AVss + 3.5	_	AVcc	V	
Reference voltage	lR	AVR	A/D running	_	400		μΑ	
supply current	I _{RH}		A/D off	_		5	μΑ	

^{*:} Includes sampling time

Note: For tinst see " (4) The Instruction Cycle".

(2) MB89P538/PV530

(Vcc = 3.5 V to 5.5 V, AVss = Vss = 0 V, $T_A = -40$ °C to +85 °C)

Parameter	Symbol Pi	Pin name	Condition	Value			Unit	Remarks
i arailletei				Min	Тур	Max	Onne	iveillai ks
Resolution capability			_	_	_	10	bit	
Total error				_	_	±3.0	LSB	
Linear error				_	_	±2.5	LSB	
Differential linear error				_		±1.9	LSB	
Zero transition voltage	Vот	_	AVR = AVcc	AVss-1.5 LSB	AVss+0.5 LSB	AVss+2.5 LSB	mV	AVcc = Vcc
Full scale transition voltage	V _{FST}			AVR – 3.5 LSB	AVR – 1.5 LSB	AVR+1.5 LSB	mV	
Inter-channel variation				_	_	4.0	LSB	
Conversion time				_	60 tinst	_	μs	*
Sampling time				_	16 tinst	_	μs	
Analog input current	Iain	AN0 to	_	_	_	10	μΑ	
Analog input voltage	Vain	AN7		0	_	AVR	V	
Reference voltage				AVss + 3.5	_	AVcc	V	
Reference voltage	IR	AVR	A/D running	_	400	_	μΑ	
supply current	Irh		A/D off	_		5	μΑ	

^{*:} Includes sampling time

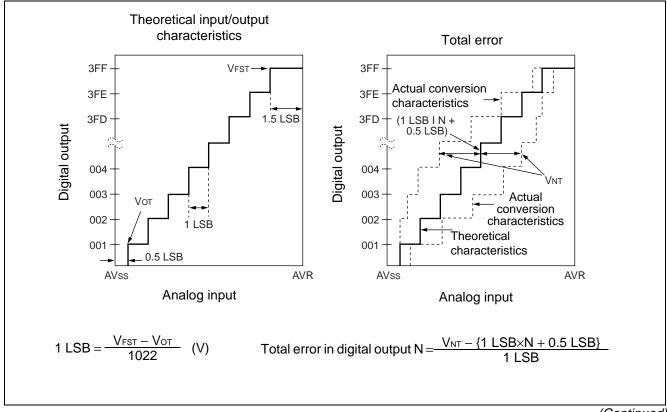
Note: For tinst see " (4) The Instruction Cycle".

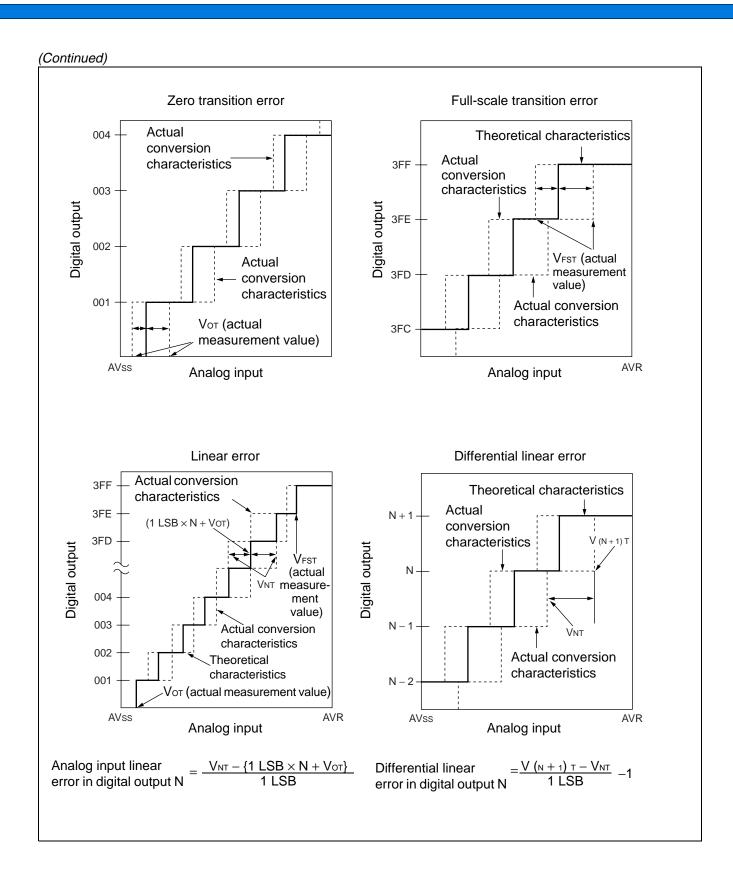
(3) A/D Converter Terms and Definitions

Resolution

The level of analog variation that can be distinguished by the A/D converter.

• Linear error (unit : LSB)

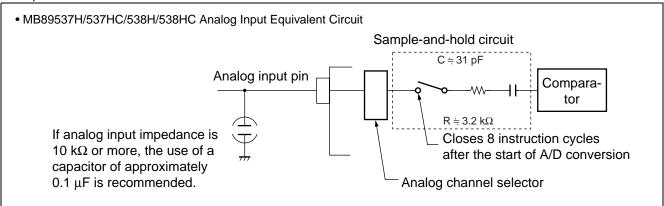

The deviation between the value along a straight line connecting the zero transition point ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") of a device and the full-scale transition point ("11 1111 1110" $\leftarrow \rightarrow$ "11 1111 1111"), compared with the actual conversion values obtained.

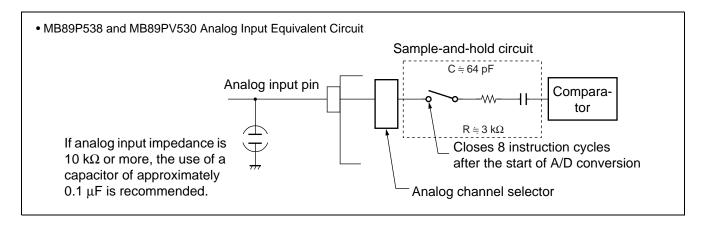

• Differential linear error (Unit : LSB)

The deviation from the theoretical input voltage required to produce a change of 1 LSB in output code.

• Total error (Unit : LSB)

The difference between theoretical conversion value and actual conversion value.

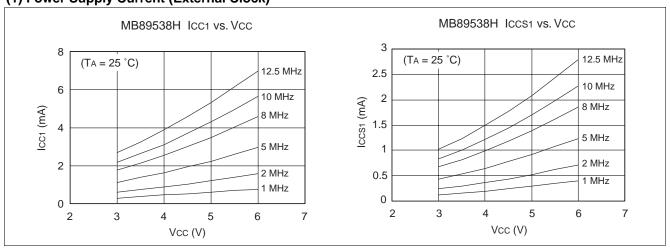




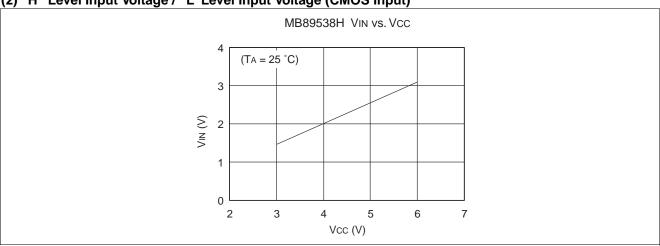
(4) Precautionary Information

• Input Impedance of Analog Input Pins

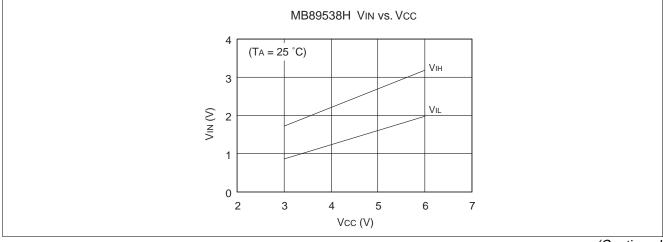
The A/D converter of MB89530H has a sample & hold circuit as shown below, which uses a sample-and-hold capacitor to obtain the voltage at the analog input pin for 8 instruction cycles following the start of A/D conversion. For this reason if the external circuits providing the analog input signal have high output impedance, the analog input voltage may not stabilize within the analog input sampling time. It is therefore recommended that the output impedance of external circuits be reduced to 10 k Ω or less.

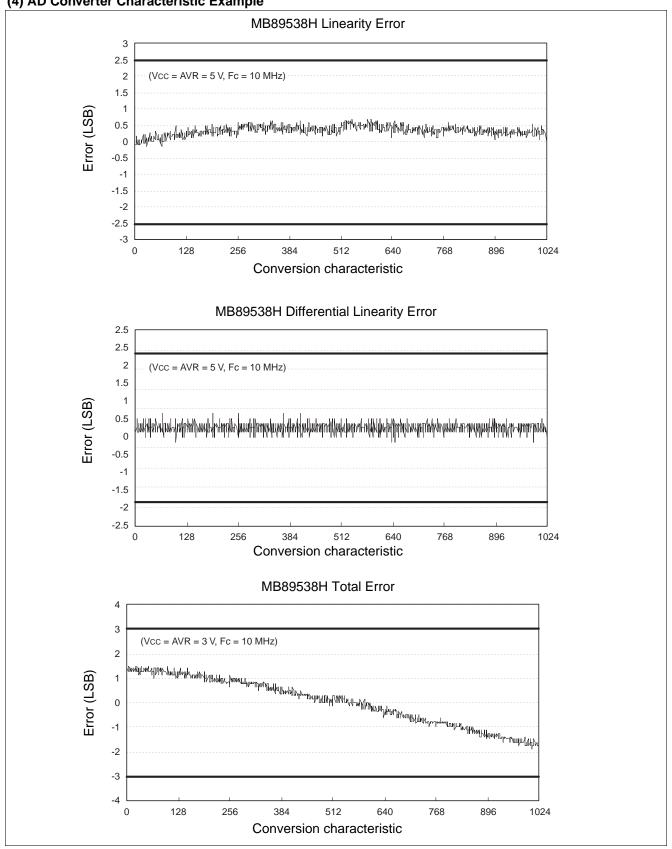


About error


The smaller the absolute value |AVR - AVss| is, the greater the relative error becomes.

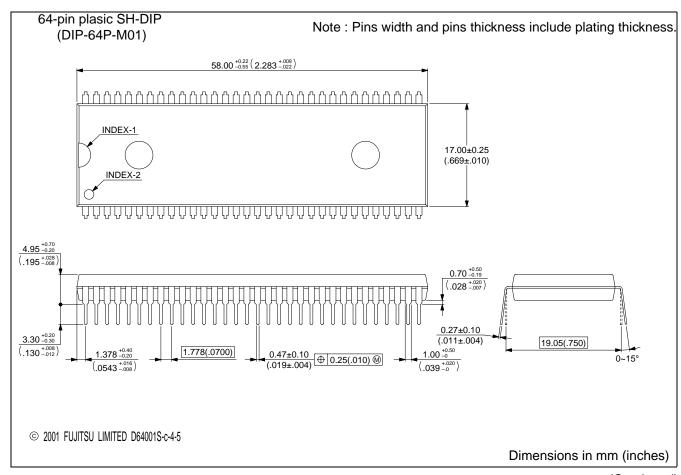
■ EXAMPLE CHARACTERISTICS

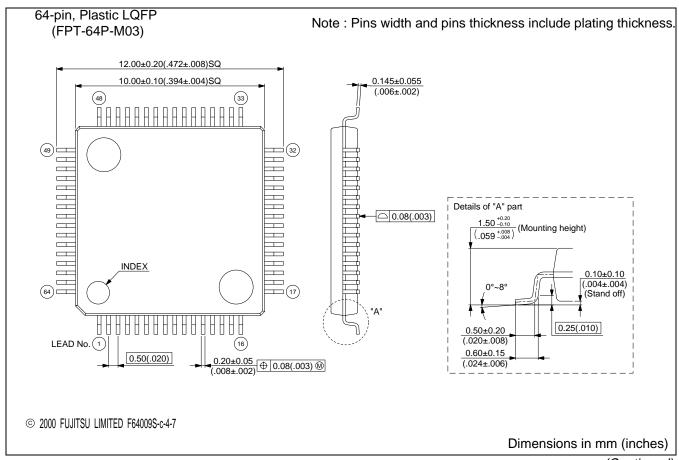

(1) Power Supply Current (External Clock)

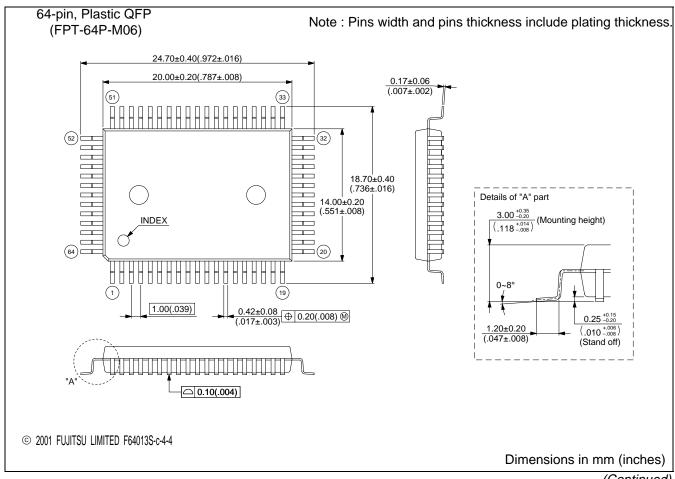

(2) "H" Level Input Voltage / "L"Level Input Voltage (CMOS Input)

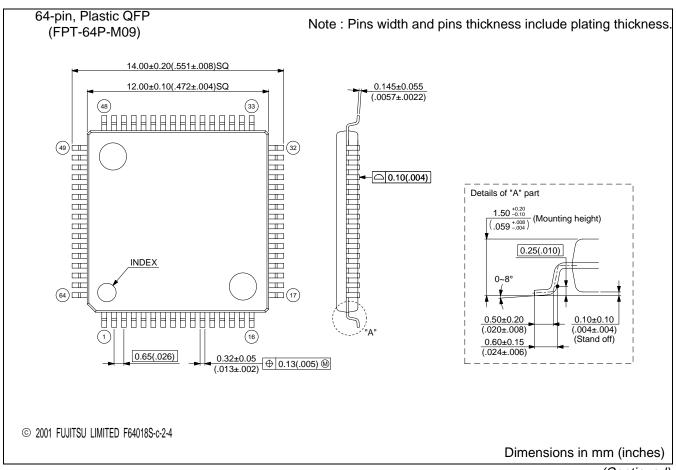
(3) "H"Level Input Voltage / "L"Level Input Voltage (Hysteresis Input)

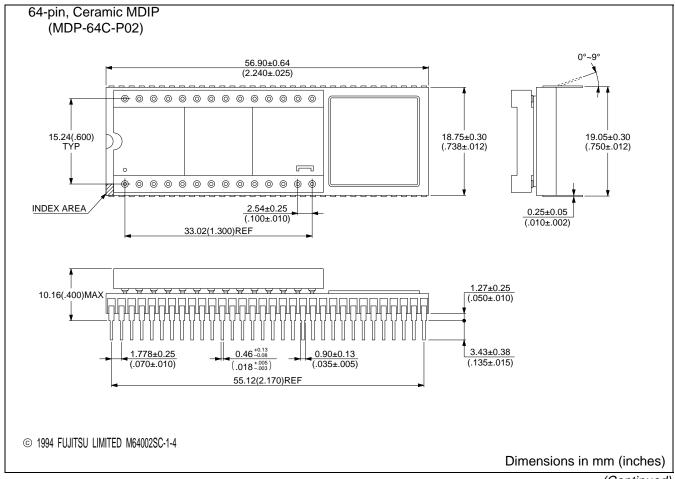
■ MASK OPTIONS

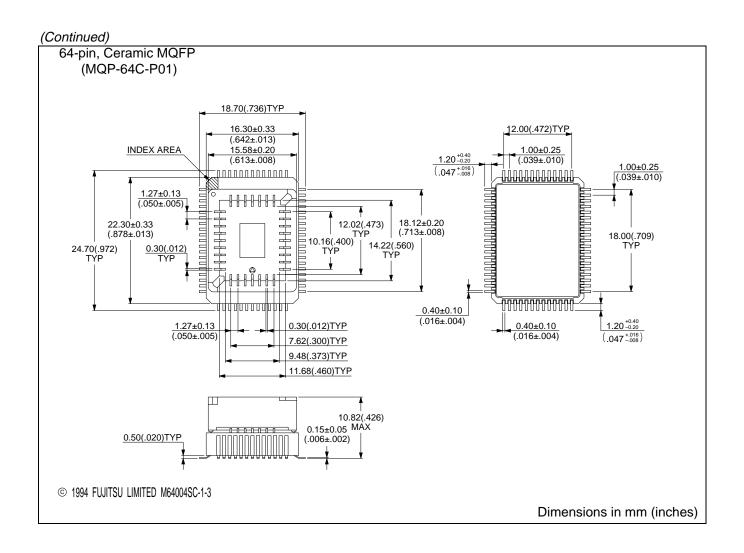

No	Part number	MB89537H MB89537HC MB89538H MB89538HC	MB89P538-101 MB89P538-201	MB89PV530	
	Method of specification	Specify at time of mask order	Setting not possible	Setting not possible	
1	Main clock Select oscillator stabilization wait period (FcH* = 10 MHz) approx.2 ¹⁴ /FcH* (approx.1.6 ms) approx.2 ¹⁷ /FcH* (approx.13.1 ms) approx.2 ¹⁸ /FcH* (approx.26.2 ms)	Selection available	2 ¹⁸ /Fсн* (approx. 26.2 ms)	2 ¹⁸ /F _{CH} * (арргох. 26.2 ms)	
2	Clock mode selection • 2-system clock mode • 1-system clock mode	Selection available	• 101 : 1-system clock mode • 201 : 2-system clock mode	2-system clock mode	


^{*:} Fch: Main clock frequency


■ ORDERING INFORMATION


Part number	Package	Remarks
MB89537HP MB89537HCP MB89538HP MB89538HCP MB89P538P-101 MB89P538P-201	DIP-64P-M01	MB89537HP and MB89538HP do not have I ² C functions.
MB89537HPF MB89537HCPF MB89538HPF MB89538HCPF MB89P538PF-101 MB89P538PF-201	FPT-64P-M06	MB89537HPF and MB89538HPF do not have I ² C functions.
MB89537HPFM MB89537HCPFM MB89538HPFM MB89538HCPFM MB89P538PFM-101 MB89P538PFM-201	FPT-64P-M09	MB89537HPFM and MB89538HPFM do not have I ² C functions.
MB89537HPFV MB89537HCPFV MB89538HPFV MB89538HCPFV	FPT-64P-M03	MB89537HPFV and MB89538HPFV do not have I ² C functions.
MB89PV530C	MDP-64C-P02	
MB89PV530CF	MQP-64C-P01	


■ PACKAGE DIMENSIONS



FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0201

© FUJITSU LIMITED Printed in Japan